Определение гранулометрического состава грунта

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 342-77 Реактивы. Натрий дифосфат 10-водный. Технические условия

ГОСТ 3760-79 Реактивы. Аммиак водный. Технические условия

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 8735-88 Песок для строительных работ. Методы испытаний

ГОСТ 8984-75 Силикагель-индикатор. Технические условия

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 12071-2000 Грунты. Отбор, упаковка, транспортирование и хранение образцов

ГОСТ 24104-2001* Весы лабораторные. Общие технические требования

_________

* В Российской Федерации действует ГОСТ Р 53228-2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

ГОСТ 25100-2011 Грунты. Классификация

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 28498-90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт изменен (заменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Как гранулометрический состав влияет на растения?

И фракция, и представление разными минералами влияет на аграрно-технические свойства почвы. В частности, состав может определить водно-воздушную среду грунта, его склонность к процессам эрозии, агрегированность, плотность, биологические и химические качества. Так, например, песчаные и глинистые почвы обуславливают слабость среды в плане воздушного и влажностного обмена. Это губительно для большинства растений – особенно, выращиваемых в рамках сельскохозяйственных угодий, где на плодородный слой также влияет и характер возделывания. Но гранулометрический состав важен для растительности даже не столько с точки зрения структуры и плотности, сколько содержанием полезных элементов. Иногда наличие магния, фосфора и солей само по себе обеспечивает оптимальный пласт питательной базы, избавляя и от необходимости внесения дополнительных удобрений.

Гранулометрический состав песков

В составе инженерно-геологических изысканий проводят лабораторные исследования, по определению гранулометрического состава песчаных грунтов.

Образец песка, 100 грамм, просеивают через сита с отверстиями,-10 ;5; 2,5; 1,0; 0,5; 0,25;0,10 миллиметров, разделяя на фракции. Потом каждую фракцию отдельно взвешивают, и по процентному соотношению частиц, пески разделяют на гравелистые, крупные, средней крупности, мелкие и пылеватые. Также в определение физических характеристик песчаных грунтов входит определение влажности, удельного и объемного веса, и плотности.

гранулометрический состав песчаных грунтов

Определение крупности песков, очень важная задача для будущего строительства, так как от этого показателя зависит несущая способность грунтов основания. Чем крупнее состав фракций песчаных грунтов, тем больше его несущая способность.

Пылеватые и мелкие пески в насыщенные водой, при низкой плотности сложения — являются плывунами. Наличие таких грунтов в основании фундамента проектируемого сооружения, зачастую приводит к неравномерным осадкам здания или сооружения, возникновению и развитию трещин как в основании фундаментов, так и в стенах сооружения.

Поэтому изучение гранулометрического состава песчаных грунтов, очень важная задача для проектирования будущего строительства зданий и сооружений.

Так же песок используется как строительный материал, для строительства насыпей железных и автомобильных дорог, входит в состав цемента, бетона, является основой для производства стекла и стеклянных изделий. Цели его использования различны, но для всех них необходимы точные значения гранулометрического состава.

Гранулометрический (зерновой, механический) состав песков — процентное, весовое содержание в породе различных по величине фракций — это совокупность одинаковых зерен и частиц

Для определения гранулометрического состава осадочных пород чаще всего применяют следующую классификацию обломков (размер обломков в мм): валуны крупные > 500, средние 500 — 250, мелкие 250 — 100; галька (щебень) крупная 100 — 50, средняя 50 — 25, мелкая 25 — 10; гравий крупный 10 — 5, мелкий 5 — 2; песок очень крупный 2 — 1, крупный 1 — 0,5, средний 0,5 — 0,25, мелкий 0,25 — 0,10, тонкозернистый 0,10 — 0,05, пыль 0,05 — 0,005; глина <0,005.

Гранулометрический (механический) анализ — определение размеров и количественного соотношения частиц, слагающих рыхлую горную породу. Самым простым видом гранулометрический анализ является так называемый ситовый анализ. Разделение на фракции частиц породы, которые не проходят через сита с отверстиями 0,25 мм, производят методом отмучивания. Для гранулометрического анализа глинистых грунтов применяют ареометрический метод.

По гранулометрическому составу крупнообломочные грунты и пески подразделяют согласно таблице

Разновидность грунтов
Размер зерен, частиц d, мм
Содержание зерен, частиц,% по массе
Крупнообломочные:
валунный (при преобладание окатанных частиц — глыбовый)св. 200св.50
галечниковый (при не окатанных гранях — щебенистый)>10>50
гравийный (при не окатанных гранях — дресвяный)>2>50
Пески:
гравелистый>2>25
крупный>0,50>0,50
средней крупности>0,25>0,50
мелкий>0,1075 и св.
пылеватый>0,10менее 75

При наличии в крупнообломочных грунтах песчаного заполнителя более 40% или глинистого заполнителя более 30% от общей массы воздушно-сухого грунта в наименовании крупнообломочного грунта добавляется наименование вида заполнителя и указывается характеристика его состояния. Вид заполнителя устанавливается после удаления из крупнообломочного грунта частиц крупнее 2 мм.

По степени неоднородности гранулометрического состава С_u, крупнообломочные грунты и пески подразделяют на:

однородный грунт С_u <= 3; неоднородный грунт С_u > 3.

Определение гранулометрического состава ареометрическим методом

Зерновой состав грунта определяется при помощи замеров ареометром плотности суспензии во время ее отстаивания.

200 г средней пробы высушенного грунта просеивается через комплект сит с диаметром отверстий 1, 2, 5, 10 мм. Те элементы, которые задержались на ситах и упали в поддон, взвешиваются. Отдельно отбираются образцы грунта весом не меньше 15 г для подсчета их удельного веса и природной влажности.

Из тех частиц, которые прошли через сито с отверстиями в 1 мм, отбирается средняя проба и помещается в фарфоровую чашу (вес уже известен) и взвешиваются. Показатели для глинистых почвы должны быть – 20 г, суглинков – 30 г, супесей – 40 г.

Прежде чем испытывать образцы ареометрическим методом, выполняется испытание суспензии почвы на коагуляцию. Для этого проба грунта весом в 2 г растирается в фарфоровой емкости с 4-6 см³ дистиллированной воды, после чего в чашу добавляется еще 14-16 см³ воды и полученная смесь кипятится на протяжении 5-10 минут. Взвесь помещается в мерный цилиндр или пробирку объемом 100-150 см³, куда доливается дистиллированная вода в таком количестве, чтобы общий объем для глинистого грунта достигал 100 см³, для суглинков – 70см³, для супесей – 50см³. Смесь взбалтывается и отставляется на сутки. Если в это время произошла коагуляция, то жидкое содержимое должно быть прозрачным, а осадок иметь рыхлую структуру с хлопьевидными частицами.

Если суспензия не коагулирует, то для ее разбавления пробы используется дистиллированная вода с добавлением 25% аммиачного раствора в расчете 0,5см³ на 1 л жидкости. Полученная суспензия поддается кипячению на протяжении часа, после охлаждается при комнатной температуре.После коагуляции в суспензию доливается вода, все это взбалтывается и выливается в сито с отверстиями 0,1 мм. Те частицы, которые задержались на сите, помещаются в фарфоровую чашу и растираются. Образовавшаяся взвесь снова пропускается через сито с отверстиями 0,1 мм. Процедура повторяется до полного осветления воды над осадком, который скапливается на дне чаши.Частички, которые остались на сите в последний заход и осадок в чаше переносятся в заранее взвешенную емкость, отправляются на песчаную баню для выпаривания и высушиваются в сушильном шкафу до постоянного веса, после чего просеиваются через комплект сит с отверстиями 0,1, 0,25, 0,5 мм. Фракции грунта, которые остались на ситах, взвешиваются. Частицы грунта, которые прошли через сито с отверстиями 0,1 мм переносятся в цилиндр с коагулирующей суспензией, объем в мерном цилиндре доводится до 1 л.

Если проводится определение состава грунта, суспензия которого коагулирует, то до момента введения воды в пробирку добавляется 25см³4-6,7% пирофосфорнокислого натрия. Взвесь перемешивается до полного исчезновения осадка, момент завершения смешивания фиксируется секундомером. По таблице определяется время от завершения перемешивания до изучения плотности суспензии.

Диаметр частиц грунта, мм

Время от момента завершения перемешивания до момента замеров плотности взвеси

До 0,05

1 мин

От 0,01

30 мин

До 0,005

3 ч

За 10-12 секунд до начала определения плотности, в суспензию опускается ареометр, который не должен касаться стенок и дна емкости, после чего берется отсчет по данному прибору, что не должно превышать 5-7 секунд.

Температурный контроль суспензии выполняется за 5 минут до начала опыта, а также после каждого замера плотности взвеси ареометром. Если температура отличается от +20 градусов, то результаты ареометра рассматриваются с поправкой в соответствии со следующей таблицей:

Темпера-

тура суспензии,С

Поправки к отсчету по ареометру R

Темпера-

тура суспензии, °С

Поправки к отсчету по ареометру R

Темпера-

тура суспензии, С

Поправки к отсчету по ареометру R

10,0

—1,2

17,0

—0,5

24,0

+0,8

10,5

—1,2

17,5

—0,4

24,5

+0,9

11,0

—1,2

18,0

—0,3

25,0

+1,0

11,5

—1,1

18,5

—0,3

25,5

+1,1

12,0

—1,1

19,0

—0,2

26,0

+1,3

12,5

—1,0

19,5

—0,1

26,5

+1,4

13,0

—1,0

20,0

0,0

27,0

+1,5

13,5

—0,9

20,5

+0,1

27,5

+1,6

14,0

—0,9

21,0

+0,2

28,0

+1,8

14,5

—0,8

21,5

+0,3

28,5

+1,9

15,0

—0,8

22,0

+0,4

29,0

+2,1

15,5

—0,7

22,5

+0,5

29,5

+2,2

16,0

—0,6

23,0

+0,6

30,0

+2,3

16,5

—0,6

23,5

+0,7

  

Специалисты изучают результаты и оформляют отчетную документацию.

Компания «GeoCompani» в сжатые сроки и по выгодным ценам выполнит лабораторные исследования грунтов различными методами. Работаем в Москве и Московской области. Задать вопросы и подать заявку можно по телефону +7-495-777-65-35 или WhatsApp..

Значение гранулометрического состава

Гранулометрический состав определяет практически все свойства почв, поэтому его необходимо учитывать в работе агронома.

Выше поглотительная способность, теплоемкость, влагоемкость, биогенность почв, ниже водо- и воздухопроницаемость и т. д. Таким образом, гранулометрический состав влияет на основные показатели плодородия.

От гранулометрического состава зависят:

  1. течение в почвах микро-, мезо- и макропроцессов;
  2. формирование морфологических особенностей почвенных профилей.

Гранулометрический состав влияет на интенсивность развития водной и ветровой эрозий, на проходимость транспорта по грунтовым дорогам.

От гранулометрического состава зависят технологические особенности агроприемов:

  • сроки проведения полевых работ,
  • дозы минеральных удобрений,
  • наиболее целесообразное размещение на пахотных угодьях сельскохозяйственных культур с теми или иными видами обработки почв и т. д.

От гранулометрического состава зависят затраты топлива на обработку почв, на земляные работы.

Какой же гранулометрический состав лучше для земледелия? Многие наиболее благоприятные свойства и режимы складываются в легко- и среднесуглинистых почвах.

Однако при хорошей оструктуренности почв, например черноземов, лучшими будут тяжелосуглинистые и глинистые почвы. В агрономической практике используют приемы, позволяющие при необходимости регулировать гранулометрический состав. На песчаных почвах проводят глинование, на глинистых — пескование.

Классификация механических элементов и их свойства

Свойства механических элементов твердой фазы почв и почвообразующих пород, химический и минералогический составы меняются от их размера довольно отчетливо, а иногда и резко, что послужило основанием для разделения их на группы, или фракции.

Такая группировка называется классификацией механических элементов. Наибольшее признание получила классификация механических элементов Н. А. Качинского.

Названия фракций механических элементов

Размеры фракций, мм

Камни> 3
Гравий3—1
Песок:
         крупный1—0,5
         средний0,5—0,25
         мелкий0,25—0,05
Пыль:
         крупная0,05—0,01
         средняя0,01—0,005
         мелкая0,005-0,001
Ил:
         грубый0,001—0,0005
         тонкий0,0005—0,0001
         коллоиды< 0,0001

Охарактеризуем главнейшие особенности фракций механических элементов.

Камни (>3 мм) — обломки горных пород и минералов, водопроницаемость провальная, элементы питания находятся в труднодоступной форме.

Гравий (3—1 мм) — обломки первичных минералов, водопроницаемость провальная, водоподъемная способность отсутствует, влагоемкость очень низкая (< 3 %), элементы питания растений в труднодоступной форме.

Песок (1—0,05 мм) — обломки первичных минералов, среди которых преобладают кварц и полевые шпаты; по мере уменьшения диаметра частиц песка возрастает содержание кварца как минерала, более устойчивого к выветриванию; водопроницаемость высокая, низкая водоподъемная способность (от нескольких до 50 см) и низкая влагоемкость (3—10 %).

Пыль крупная (0,05—0,01 мм) — близка по минералогическому составу к фракциям песка, но водные свойства несколько лучше, не участвует в структурообразовании.

Почвы, обогащенные крупной и средней пылью, после дождя и последующего высыхания заплывают с образованием поверхностной корки, отрицательно влияющей на водно-воздушные свойства пахотного горизонта, что может привести к гибели всходов растений; устраняется это боронованием.

Пыль средняя и мелкая (0,01—0,001 мм) — в этих фракциях по сравнению с крупной пылью уменьшается количество кварца и полевых шпатов, особенно в мелкой пыли.

В мелкой пыли больше слюд, роговой обманки, характерно наличие вторичных минералов и гумусовых веществ; частицы средней пыли практически не участвуют в структурообразовании.

А частицы мелкой пыли способны к коагуляции и структурообразованию; влагоемкость и водоподъемная способность высокие; водопроницаемость низкая.

Ил (< 0,001 мм) — в илистой фракции первичных минералов мало, среди них кварц, ортоклаз, мусковит; ил состоит в основном из высокодисперсных вторичных минералов, глинных минералов, гумусовых веществ, обладает высокой поглотительной способностью.

Способностью к коагуляции и склеиванию механических элементов в агрегаты; коллоидная фракция ила играет главную роль в физико-химических почвенных процессах; ил является средоточием элементов питания растений; богат оксидами железа и алюминия; влагоемкость очень высока; водопроницаемость и водоподъемная способность минимальные.

Частицы твердой фазы почвы крупнее 1 мм (камни и гравий) называют скелетной частью, а менее 1 мм — мелкоземом.

Учитывая, что каждая фракция (группа) механических элементов обладает определенными свойствами, от которых зависят показатели плодородия, принято определять их процентное содержание и процентное соотношение.

Процентное содержание каменистой и гравелистой фракций определяют на основе просеивания образца почвы через почвенные сита, а в основу метода разделения по размеру фракций мелкозема положены скорости их падения в воде, рассчитанные по формуле Дж. Т. Стокса.

Влияние гранулометрического состава на продуктивность растений

Продуктивность растений на почвах различного гранулометрического состава может существенно различаться, что объясняется различием в свойствах почв.Оптимальный гранулометрический состав зависит от условий влагообеспеченности и технологии возделывания.В засушливых условиях низкий запас влаги в лёгких почвах (супесях и песках) и слабый капиллярный подъём приводят к существенному снижению урожайности. В условиях хорошего и избыточного увлажнения такие почвы лучше аэрируются и растения на них чувствуют себя лучше.Низкий запас элементов питания в лёгких почвах можно легко устранить при внесении удобрений, которые имеют высокую эффективность на таких почвах вследствие малой буферности.

Общие сведения о гранулометрическом составе

Под гранулометрическим составом понимается наличие механических элементов в почве. Причем в данном случае почву можно рассматривать как общее обозначение грунта, который может быть также искусственным. Что касается частиц, то они могут иметь разные характеристики и происхождение. Также встречаются разные по концентрации виды составов. Например, гранулометрический состав песка будет в той или иной мере однородным, даже в плане содержания частиц определенной фракции. Специалисты отмечают, что минимальный размер элементов, которые способны выявлять практикуемые техники данного анализа, составляет лишь 0,001 мм.

В соответствии с ГОСТом выделяется шесть наименований фракций – это те же песчаные частицы, глыбовые, гравийные, глинистые и др. Каждая фракция имеет не только свой диапазон типоразмеров, но и биологическое происхождение. При этом не стоит думать, что только лишь содержанием мелких частиц характеризуется гранулометрический состав. ГОСТ под номером 12536-79 также отмечает, что максимальный размер фракции, которая учитывается как составная часть почвы, достигает 200 мм. Это преимущественно валунные элементы, которые могут иметь и большие размеры. Самую же мелкую фракцию представляет глина, хотя в этом показателе с ней могут конкурировать и песчаные частицы.

Методы определения состава грунтовой смеси

Для определения состава используется принцип расчленения грунтовой смеси на определенные группы, схожие по своему составу и специально отобранные для пробы. Размеры частиц определяется в миллиметрах, а вес – в граммах.

Существуют различные методики определения такого состава, главными из которых являются ситовой, ареометрический, пипеточный и отмучивание.

Ситовой

В его основе – использование набора сит с отверстиями, размерами 0,25; 0,1; 1; 0,5; 5; 2; 10 мм, а также специальной машины для просеивания с поддоном.

Благодаря такому просеиванию удается определить и визуально увидеть состав грунта, а также процентное соотношение имеющихся в нем минералов и компонентов.

Для получения объективного анализа следует внимательно отнестись к вычислению массы средней пробы грунта, которая должна иметь следующие значения:

  • При частицах, размерами до 2 мм — 100 г.
  • При частицах, размерами выше 2 мм (до 10% от общего веса) – 500 г.
  • При частицах, размерами выше 2 мм (10-30% от общего веса) – 1000 г.
  • При частицах, размерами выше 2 мм (свыше 30% от общего веса) – 2000 г.

Ареометрический

Основан на учете изменения плотности суспензии, которая замеряется по мере отстаивания с помощью специального прибора – ареометра.

Предварительно отбирается проба, где используется метод квартования, при котором смесь проходит дополнительно через сито, с диаметром отверстий до 1 мм.

Масса средней пробы составляет:

  • Для супесей – 40 г.
  • Для глин – 20 г.
  • Для суглинков – 30 г.

После определения процентного содержания смесей грунта при помощи ареометра, вычисляют содержание каждой отдельной фракции. Здесь используют метод последовательного вычитания меньшей величины из большей. Пробу отбирают с учетом природной влажности.

Метод отмучивания

Суть методики заключается в определении содержания пылеобразных и глинистых частиц по изменению масса песка после предварительного отмучивания частиц. Для выполнения испытания используется сушильный шкаф, цилиндрическое ведро или сосуд и секундомер.

В ходе проведения испытания просеянный и высушенный до постоянной массы песок (1000 г) помещают в ведро и заливают водой, после чего выдерживают так 2 часа.

Цилиндрическое ведро

Параллельно из воды удаляются все посторонние частицы и глинистые примеси. Промывку производят несколько раз. После того, как вода в ходе промывки станет чистой, можно приступать к сливу суспензии через нижнее отверстие в сосуде.

Далее остается только вычислить содержание в песке отмучиваемых глинистых частиц по формуле:

где:

  • m – вес высушенной навески до процесса отмучивания
  • m1 — вес высушенной навески после процесса отмучивания

Пипеточный

При таком способе содержание глинистых и пылеобразных частиц определяется путем выпаривания суспензии (получаемой при промывке песка и взвешивании сухого остатка), отобранной с помощью пипетки.

Металлический цилиндр с пипеткой мерного типа

Спустя 1,5-2 минуты, когда осадок ляжет на дно. С помощью мерной пипетки берут пробу и выливают все содержимое на предварительно взвешенный стакан. Полученную суспензию выпаривают в специальном сушильном шкафу.

Результат обрабатывается по формуле:

где:

  • m — масса навески песка, г;
  • m 1- вес чашки для выпаривания жидкости, г;
  • m 2- вес чашки с уже выпаренным порошком, г.

Виды обломочных несцементированных грунтов

Исходя из неоднородного состава, существует определенная классификация, позволяющая соотносить исследуемые образцы к одной из категорий.

Выделяют такие виды обломочных несцементированных грунтов:

  • песчаные;
  • суглинки;
  • супеси;
  • крупнообломочные;
  • глиняные.

В основе данной классификации лежит принцип фракционного размера обломков, от чего напрямую зависят свойства, в том числе степени водопоглощения и водорастворения.

Крупнообломочные

в результате воздействия водных потоков и ледников на скальные породы

В их составе свыше 50% частиц, диаметр которых превышает 2 мм.

Подразделяются на два вида: с высоким содержанием песчаных (свыше 40%) и глинистых (свыше 30%) частиц.

Они могут быть достаточно однородными, однако все они характеризуются степенью водонасыщения, текучестью и уровнем влажности.

Такие грунты образуются в результате сильного выветривания горных пород.

Щебенистые

Разновидность галечниковых грунтов плотностью от 1,2 до 3 г/см3, представляющие собой раздробленную в результате естественных причин скальную породу.

Частицы в виде щебеночных обломков, имеют размеры от 10 до 200 мм, причем разной формы (игловатая, пластинчатая). Данные грунты в сухом состоянии обладают крайне низкой способностью связываться между собой.

Грунт характеризуется низкой способностью к сжатию, давая эффективную основу для фундамента строений.

Дресвяные/гравийные

Дресвяные и гравийные грунты – это обломочная категория грунтовых составов, имеющая частицы окатанного типа, размером от 3 до 70 мм. Чаще всего такие грунты располагаются в поймах рек, рядом с озерами, прудами и морями.

Различный минералогический состав частиц, составляющих такие грунты, придает ему определенную скелетность, неплохую прочность и устойчивость.

Песчаные

Песчаные грунты – это смесевые частицы разрушенных твердых (горных) пород, включающих в себя зерна кварца и ряда других минералов.

В зависимости от особенностей входящих в состав такого грунта элементов он может иметь высокую, среднюю или низкую плотность. По характеристикам он относится к несвязному минеральному типу, размеры частиц которого составляют от 0,05 до 2 мм в объеме, не больше 50%.

Крупный и гравелистый песок

Достаточно схожими свойствами обладает крупный песок, где размеры песчинок составляют от 0,30 до 2 мм.

В состав обоих типов песка входят такие минералы, как полевой шпат (8%), кварц (70%), кальцит (3%) и прочие (11%).

Примечательно, что свойство грунта в плане хорошей несущей способности не зависит от объема влаги, присутствующей в составе гравелистого и крупного песка.

Средний и мелкий песок

Мелкий песок состоит из песчинок, размерами от 1,5 до 2,0, а средний – от 2,0 до 3,0 мм. Такие песчаные составы имеют в среднем плотность порядка 3-5 кг/см2, которая дает им высокую несущую способность.

В отличие от крупного и среднего, мелкий песок при насыщении влагой теряет свои прочностные свойства, которые уменьшаются в 2 раза.

Пылеватые частицы

По своему минеральному составу пылеватые частицы – это практически чистый кварц, реже — полевые шпаты с примесью других минералов. Размеры таких составов от 0,050 до 0,001 мм.

В сухом состоянии они обладают крайне слабой связанностью, имеют низкий уровень пластичности. Хороший капиллярный состав позволяет поднимать воду на высоту до 2,5-3 м.

Суглинок и глинистые частицы

Суглинок – рыхлая порода осадочного типа, содержащая в среднем от 10 до 30% глинистых веществ, размером менее 0,005 мм. В таком грунте может присутствовать супесь – песчаные частицы с содержанием глинистых примесей в объеме до 10%, которые по своим характеристикам очень схожи с песчаными грунтами.

В песчаных суглинках содержится в основном кварц с воднорастворимыми солями, а в глинистых – минералы монтмориллонит, иллит и каолинит.

Распространенные фракции составляющих почвы

Выделяют несколько группировок механического состава, но наиболее распространенной классификацией считается следующая:

  • камни;
  • гравий;
  • песок – подразделяется на крупный, средний и мелкий;
  • ил – делится на грубый, тонкий и коллоиды;
  • пыль – крупная, средняя и мелкая.

Другое разделение гранулометрического состава земли выглядит следующим образом: песок рыхлый, песок связной, суглинок легкий, средний и тяжелый, супесь, глина легкая, средняя и тяжелая. В каждой группе содержится определенный процент физ.глины.

Почва изменяется постоянно, как следствие этого процесса гранулометрический состав почв тоже не остается прежним (например, из-за подзолообразования ил переносится из верхних горизонтов в нижние). От составляющих грунта зависит структура и пористость земли, её теплоемкость и связность, проницаемость воздуха и влагоемкость.

Кафедра автомобильных дорог

ОПРЕДЕЛЕНИЕ
ГРАНУЛОМЕТРИЧЕСКОГО СОСТАВА ПЕСЧАНОГО ГРУНТА СИТОВЫМ МЕТОДОМ

Методические
указания по выполнению лабораторной работы по курсам

«Механика
грунтов основания и фундаменты» и

«Основы
технологии дорожного строительства»

для студентов
специальностей

290300 –
«Промышленное и гражданское строительство»

291000 –
«Автомобильные дороги и аэродромы»

240100 –
«Организация перевозок и управление на транспорте

(автомобильном)»

(всех форм
обучения)

Составители 
В.В. Кузеванов

Е.А. Махотина

Утверждены на заседании
кафедры

Протокол №  6  от 9.02.01

Рекомендованы к печати
учебно-методической комиссией

специальности 291000

Протокол №  6  от 9.02.01

Электронная копия
находится  в библиотеке

главного корпуса КузГТУ

Кемерово 2001

НЕОБХОДИМЫЕ ОБОРУДОВАНИЕ И МАТЕРИАЛЫ

Набор стандартных сит, весы лабораторные с
разновесами, нож, стаканчики, песчано-гравийная смесь, совок.

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Весовое содержание в грунте частиц различной
крупности, выраженное в процентах от веса грунта, взятого для анализа,
называется гранулометрическим составом грунта.

Совокупность частиц грунта с приблизительно
одинаковыми размерами называется фракцией.

Песчаные грунты разделяются на: гравелистые – 25 %
частиц крупнее 2 мм; крупные – 50 % частиц крупнее 0,5 мм; средней крупности –
50 % частиц крупнее 0,25 мм; мелкие – 75 % частиц крупнее         0,1 мм;
пылеватые – 75 % частиц крупнее 0,1 мм.

Существуют различные методы определения
гранулометрического состава грунта:

1.  Ситовый

2.  Ареометрический

3.  Полевой метод
Рудковского

4.  Пипеточный

5.  Отмучивания и
набухания  

Результаты гранулометрического анализа могут быть
представлены в виде таблицы и изображены в графическом виде (рисунок).

По кривой гранулометрического состава (кумулятивной
кривой) определяют два цифровых показателя: эффективный диаметр частиц и
коэффициент неоднородности.

Диаметр частиц, процентное содержание которых в
грунте менее 10, называется эффективным диаметром ().

Кривая гранулометрического состава

Под коэффициентом неоднородности грунта принято
понимать отношение диаметра частиц, процентное содержание которых в грунте
менее 60, к эффективному диаметру

Если коэффициент
неоднородности К больше трёх, то грунт считают неоднородным.

Характер кумулятивной кривой показывает степень
однородности частиц, составляющих грунт. Если кривая крутая, то грунт однородный,
если пологая – неоднородный.

Гранулометрический
состав грунта может быть определён в лаборатории ситовым методом (просеивание
грунта через набор сит).  

ХОД РАБОТЫ

1.  Методом
квартования (разделения ножом на 4 приблизительно равные части) определить
среднюю пробу грунта. Масса средней пробы должна составлять 250-500 г.

2.  Стандартные
сита монтируют в колонку, размещая их от поддона в порядке увеличения размера
отверстий. На верхнее сито надеть крышку.

3.  Среднюю
пробу грунта взвесить на технических весах.

4.  Взвешенную
пробу просеять через набор сит с поддоном.

5.  Фракции
грунта, задержавшиеся после просеивания на каждом сите и прошедшие в поддон,
следует перенести в заранее взвешенные стаканчики и взвесить.

6.  Сложить
веса всех фракций. Если полученная сумма превышает вес взятой для анализа пробы
более чем на 1 % , то анализ следует повторить.

7.  Определить
процентное содержание каждой фракции грунта и занести в таблицу, в порядке
накопления, начиная с наименьшей.

8.  По данным
таблицы построить кривую гранулометрического состава, в порядке накопления (кумуляции).

9.  Проведя
горизонтали на 60 % и 10 % до пересечения с кривой и опустив перпендикуляр,
определить коэффициент неоднородности.

10.  Определить вид песчаного грунта
(см. теоретические положения по процентному содержанию различных частиц).

11.  Определить однородность грунта и
сделать выводы по лабораторной работе.

Результаты определения гранулометрического

Зерновой состав заполнителей бетона

Песок

Песок — мелкий минеральный заполнитель с размером зерен до 3 или 5 мм (по ГОСТ 8736—58 допускается содержание зерен крупнее 5—10 мм не более 10% по весу). Песок для тяжелого бетона должен удовлетворять следующим требованиям:

Объемный вес — не менее 1550 кг/м3 для бетона марки выше 150 и для бетона, подвергающегося замораживанию в насыщенном водой состоянии, 1400 кг/м3 для бетона марки 150 и ниже.

Зерновой (гранулометрический) состав песка — кривая просеивания должна находиться в пределах заштрихованной площади (рис. 5): крупный песок — ближе к ее нижней границе, средний — ближе к верхней границе. Для мелкого песка кривая просеивания находится между заштрихованной площадью и верхней ломаной линией.

Таблица 53 — Зерновой состав различных групп песка (ГОСТ 8736—58)

Группа пескаМодуль крупностиПолный остаток на сите с сеткой № 063 в процентах
Крупный3,5-2,4От 50 до 75
Средний2.5-1,935 — 50
Мелкий2,0-1,520 — 35
Очень мелкий1,6-1,17 — 20
Тонкийменьше 1,2меньше 7

Тонкие пески допускаются только при наличии в каждом отдельном случае необходимых технико-экономических обоснований.

Содержание зерен, проходящих сквозь сито №014 (189 отв/см2) не должно превышать 10% по весу.

Количество пылевидных и глинистых (илистых) частиц, определяемых отмучиванием, не должно превышать 5%.

В песке не должно быть комков глины, суглинка и посторонних засоряющих примесей.

Рис 5 Графики зернового состава: а — песка; б — крупного заполнителя.

Содержание органических примесей допускается в таком количестве, при котором цвет жидкости над песком, обработанным по методу окрашивания (ГОСТ 8735—58), не темнее эталона или при испытании с цементом дает раствор с прочностью, не меньшей, чем раствор того же состава и с тем же песком, но промытым сначала известковым раствором, а затем водой.

При дозировке песка следует учитывать, что самый большой объем песок занимает при влажности 5—7%.

Щебень и гравий

Щебень и гравий (ГОСТ 8267—56, 8268—56) служат крупными заполнителями для бетона В соответствии с указанными ГОСТ и ТУ на изготовление и приемку сборных железобетонных и бетонных изделий CH1-61 гравий и щебень из естественного камня должны удовлетворять следующим требованиям.

Для бетонных и железобетонных конструкций и деталей в зависимости от размеров сечений конструкций и армирования должны применяться гравий и щебень следующих фракций: 3—10, 10—20, 20—40, 40—70 мм. В отдельных случаях допускается смешение двух смежных фракций. Указания по предельной крупности щебня даны в табл. 55.

Контрольные вопросы и задания

  1. Что называется механическими элементами?
  2. Назовите фракции механических элементов и их размер.
  3. В чем главные отличия фракций механических элементов по составу и свойствам?
  4. Одинаковы ли минералогический состав и свойства фракций механических элементов почв разных природных зон?
  5. Что такое гранулометрический состав почв и какие краткие его названия вы знаете?
  6. Как дается почве полное название по гранулометрическому составу?
  7. Какие почвы называют тяжелыми и легкими, теплыми и холодными и почему?
  8. Почему почвы разных типов почвообразования при одинаковом содержании физической глины могут отличаться по гранулометрическому составу?
  9. Какое влияние оказывает гранулометрический состав на плодородие почв, течение почвенных процессов и технологические особенности проведения агроприемов?
  10. Какой гранулометрический состав почв считают лучшим для земледелия и можно ли его регулировать?
Поделитесь в социальных сетях:FacebookX
Напишите комментарий